Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential

نویسندگان

  • S Ji
  • J N Weiss
  • G A Langer
چکیده

Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles was investigated in cardiac ventricular myocytes using the patch-clamp technique. Negatively charged sodium dodecylsulfate (SDS) increased amplitude of INa, whereas positively charged dodecyltrimethylammonium (DDTMA) decreased INa. Furthermore, SDS shifted the steady-state activation and inactivation of INa in the negative direction, whereas DDTMA shifted the curves in the opposite direction. These shifts provided an explanation for the changes in current amplitude. Activation and inactivation kinetics of INa were accelerated by SDS but slowed by DDTMA. These changes in both steady-state gating and kinetics of INa are consistent with a decrease of the intramembrane field by SDS and an increase of the field by DDTMA due to an alteration of surface potential after their insertion into the outer monolayer of the sarcolemma. The effect of SDS on the steady-state inactivation of INa was concentration dependent and partially reversed by screening surface charges with increased extracellular [Ca2+]. These amphiphiles also altered the activation of the delayed rectifier K+ current (IK,del), producing a shift in the negative direction by SDS but in the positive direction by DDTMA. These results suggest that the insertion of charged amphiphiles into the cell membrane alters the behavior of voltage-dependent INa and IK,del by changing the surface charge density, and consequently the surface potential and implies, although indirectly, that the lipid surface charges are important to the voltage-dependent gating of these channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac c...

متن کامل

The calcium channel blocker nitrendipine blocks sodium channels in neonatal rat cardiac myocytes.

The dihydropyridine calcium channel blocker, nitrendipine, was studied for its effects on the sodium current of single cultured ventricular cells from neonatal rats. The patch-clamp method of recording whole cell currents was used, and sodium currents were isolated by suppressing potassium and calcium currents. Potassium currents were blocked by replacing potassium with cesium in the internal a...

متن کامل

Blockade of currents by the antimalarial drug chloroquine in feline ventricular myocytes.

The effects of the antimalarial drug chloroquine on cardiac action potential and membrane currents were studied at clinically relevant concentrations. In cat Purkinje fibers, chloroquine at concentrations of 0.3 to 10 microM increased action potential duration, and reduced maximum upstroke velocity. At concentrations of 3 and 10 microM, chloroquine increased automaticity and reduced maximum dia...

متن کامل

Modulation of extracellular atrioventricular node field potential pattern and ventricular rhythm by morphine in experimental atrial fibrillation in isolated rabbit heart

Introduction: Endorphins are produced by cardiomyocytes, and exert different effects on the heart. The aim of the present study is to assess morphine effects on extracellular atrioventricular (AV) node field potential pattern and ventricular rhythm of isolated rabbit heart during experimental atrial fibrillation (AF). Methods: Effects of different concentrations of morphine (10, 20, 50 and 1...

متن کامل

Modification of Nifedipine Inhibitory Effect on Calcium Spike and L-Type Calcium Current by Ethanol in F1 Neuron of Helix aspersa

There is strong evidence demonstrating that nifedipine dissolved in ethanol selectively inhibits only L-type Ca2+ current. In addition, acute ethanol exposure reduces voltage-dependent calcium currents. In the present study, we investigated the antagonistic effect of fixed concentration of nifedipine dissolved in different concentration of ethanol on L-type Ca2+ current. In a Na+-K+ free soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 101  شماره 

صفحات  -

تاریخ انتشار 1993